
COL 10(6), 061404(2012) CHINESE OPTICS LETTERS June 10, 2012

Quantum limit in low-loss ring laser gyros
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Contrary to expectations, a measurement of the random walk in the ring laser gyro (RLG) as a function

of laser power P shows that it is not consistent with the P−1/2 rule. In the experiment, the random walk
and laser power are tested and recorded at different discharge currents. The random walk decreases with
increasing power, but with a rate much less than the theoretical value according to current literature. In
order to solve the inconsistency above, we derive the expression for the random walk in RLGs based on
laser theory. Theoretical analysis shows that, accumulating effects of lower energy level due to its limited
lifetime lead to additional quantum noise from spontaneous emission. Results show that the random walk
in the RLGs consists of two components. The former decreases with increasing power according to the
P−1/2 rule, whereas the other is power-independent. Thus far, the power-independent quantum limit has
not appeared in the literature; therefore, the expressions for RLGs should be modified to describe the low-
loss RLGs exactly, where the power-independent term takes a relatively larger proportion. The findings
are significant to the further reduction of quantum limit in low-loss RLGs.
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Ring laser gyros (RLGs) have been widely used in ar-
eas such as inertial technology, fundamental physics, and
geophysics for their abilities to accurately measure angu-
lar rates with frequency difference between counter trav-
eling wave modes[1−3]. In some applications, the random
walk gives a limit to the RLG system, e.g., RLG rotat-
ing inertial navigation system[4], telescope pointing and
tracking system[5], and ultralarge RLGs[6−8]. The ulti-
mate limit to the random walk in RLGs is determined
by quantum noise, which is also called the quantum
limit[9,10]. The quantum limit is usually considered pro-
portional to P−1/2 in classical literature on RLGs, where
P is laser power[9,10]. Dithering noise[11] is the main com-
ponent of the random walk in the dithered RLGs; there-
fore, reducing their random walk with increasing power is
rarely effective[12]. As for nondithered RLGs, such as ul-
tralarge RLGs and differential RLGs (DILAG for short),
the random walk decreases with increasing power accord-
ing to the P−1/2 rule[7,9]. We measured the random walk
as a function of laser power for three DILAGs; however,
the results showed enormous departure from the P−1/2

rule. In order to explain the inconsistency between the
experimental results and theory in current literature, we
analyzed the experimental phenomena based on laser the-
ory. Results show that the quantum limit in the low-loss
RLGs is not proportional to P−1/2. Therefore, expres-
sions for quantum limit in the RLGs should be modified.

The DILAGs were tested according to “IEEE Stand
Specification Format Guide and Test Procedure for
Singular-axis Laser Gyros” and analyzed using the Al-
lan variance method[13,14]. Discharge currents of the DI-
LAGs were increased from 0.5 to 1.0 mA at a step of 0.1
mA. Random walk and laser power were obtained at each
discharge current. Each DILAG had four mirrors. Laser
output through one mirror was received by a PIN pho-
todiode and converted to voltage with a transimpedance
amplifier with bandwidth lower than 10 Hz. Therefore,
the measured laser power was proportional to the straight
output power of the DILAG, with a unit of volts (V). Ex-
perimental data for three DILAGs are shown in Table 1.

Let x = 1/P , y = A2. According to the P−1/2 rule, a0

will approach zero if we use the equation y = a1x+a0 to
make linear fitting for the data in Table 1. The actual
results are shown in Fig. 1.

Contrary to expectations, a0 was not close to zero, but
was a relatively large constant. This phenomenon indi-
cates a term independent of power in the random walk.
The power-dependent term a1x was less than a0 in the
range from 0.5 to 1.0 mA for our DILAGs. Therefore,
the power-independent term is not negligible and serves
as main component of the random walk at high power.
Because a0 was independent of power, the random walk
of the DILAGs showed no remarked decrease with in-
creasing power. As far as the authors know, current

Table 1. Random Walk Versus Output Power

Current I(mA) 0.5 0.6 0.7 0.8 0.9 1.0

DILAG 1
Power P (V) 0.541 0.615 0.734 0.842 0.950 1.040

Random Walk A (×10−4 ◦/h1/2) 5.582 5.257 5.268 4.966 4.950 4.843

DILAG 2
Power P (V) 0.458 0.604 0.721 0.831 0.943 1.039

Random Walk A (×10−4 ◦/h1/2) 6.006 5.779 5.468 5.314 5.255 5.100

DILAG 3
Power P (V) 0.524 0.671 0.807 0.931 1.046 1.158

Random Walk A (×10−4 ◦/h1/2) 5.460 5.144 5.035 4.966 4.929 4.885
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Fig. 1. Experimental results and fitting curves. (a) DILAG
1; (b) DILAG 2; (c) DILAG 3.

literature has not reported any theoretical analysis on
the power-independent term of the random walk in the
RLGs. Therefore, we can only derive the exact expres-
sions for the random walk in the RLGs from the fun-
damental laser theory to find the origin of the power-
independent term and further to propose methods to re-
duce it.

According to Refs. [15,16], the spectral linewidth of

the field of a single mode laser is

∆νL =
N2

(N2 −N1g2/g1)
2πhν0(∆νC)2

PSE
, (1)

where N2 and N1 are the populations of upper and
lower energy level, respectively; g2 and g1 are the de-
generacies of upper and lower energy levels, respectively;
h = 6.626 × 10−34 J · s is the Planck constant; ν0 is the
laser frequency; ∆νC is the passive cavity bandwidth;
PSE is the stimulated emission power.

If the population of the lower energy level is negligible,
Eq. (1) will be reduced to

∆νL =
2πhν0(∆νC)2

PSE
, (2)

which is the famous Schawlow-Townes linewidth[17].
When laser is running far above threshold, however,

the lower level populates due to its limited lifetime. The
upper level population increases to maintain a constant
population inversion, which augments spontaneous emis-
sion power. As a result, the linewidth of the laser running
far above threshold should be modified to[16]

∆νL =
2πhν0(∆νC)2

PSE

τ2

τ2 − τ1g2/g1

+
∆νCcλ2

0

2π∆νDV

τ1g2/g1

τ2 − τ1g2/g1
, (3)

where τ2 and τ1 are the lifetimes of upper and lower lev-
els, respectively; ∆νD is the gain bandwidth; V is the
mode volume; λ0 is the wavelength.

The mirror transmission T is much less than the cavity
loss δ in the DILAGs; therefore, output power is related
to stimulated power by[9,10]

Pout = PSE
T

δ
. (4)

Using Eqs. (3) and (4), we obtain

∆νL =
τ2

(τ2 − τ1g2/g1)
2πhν0(∆νC)2

Pout

T

δ

+
c∆νCλ2

0

8π∆νDV

τ1

(τ2g1/g2 − τ1)
. (5)

Measurement uncertainty (∆ν)RMS of the single mode
laser frequency is[9,10]

(∆ν)RMS =
1

2
√

π

√
∆νL

τ
. (6)

Angular rotation rate Ω measured by the DILAG is
related to its differential frequency ∆νDF by[10]

Ω =
Lλ0

8A
∆νDF, (7)

where L is cavity length and A is area of the DILAG.
Measurement uncertainty of differential frequency

∆νDF is two times larger than (∆ν)RMS because four
laser modes are used in obtaining ∆νDF

[9]. Substituting
∆νDF in Eq. (7) with 2(∆ν)RMS, we obtain measurement
uncertainty of Ω :

(∆Ω)RMS =
Lλ0

8A
· 2(∆ν)RMS =

Lλ0

8A

√
∆νL

πτ
. (8)
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(∆Ω)RMS is related to the random walk coefficient SΩ

by [9,10]

(∆Ω)RMS =
SΩ√

τ
. (9)

Comparing Eqs. (8) with (9) and using Eq. (5), we
obtain the expression for the random walk coefficient SΩ

caused by quantum noise of spontaneous emission:

SΩ =
Lλ0

8A

√
∆νL

π
=

Lλ0

8
√

πA

·
√

τ2

(τ2−τ1g2/g1)
2πhν0(∆νC)2

Pout

T

δ
+

τ1

(τ2g1/g2−τ1)
c∆νCλ2

0

8π∆νDV
.

(10)

Equation (10) indicates random walk caused by quan-
tum noise consisting of two terms; one is power-
dependent whereas the other is not.

We should note that the gain is assumed to be dis-
tributed in the whole ring path in deriving Eq. (3)[15].
In fact, the gain length is merely 3/10 of the whole ring
path for our DILAGs. Therefore, the second term in the
root of Eq. (10) should be multiplied by 0.3 and V should
be the mode volume in the gain area.

If only the first term in the root of Eq. (10) is consid-
ered and the approximation τ2 >> τ1 is used, SΩ will be
reduced to SΩ1:

SΩ1 =
Lλ0

8A

√
∆νL

π
=

cλ0

√
hν0T

8π
√

2A

√
δ

Pout
. (11)

This is the expression used in classical literature on
RLGs, such as in Refs. [2,9,10].

If only the second term in the root of Eq. (10) is con-
sidered, SΩ will be reduced to SΩ2

SΩ2 =
cλ2

0

√
0.3

32π
√

πA

√
τ1

(τ2g1/g2 − τ1)
L

∆νDV
· δ. (12)

For the transition of 0.6328 µm line[15], τ2/τ1 ≈ 10,
g1/g2 = 5/3; therefore, we get

τ2

(τ2 − τ1g2/g1)
= 1.064,

τ1

(τ2g1/g2 − τ1)
= 0.064.

Let us estimate the numerical values of SΩ1 and SΩ2

according to real parameters of the DILAGs.
We know light velocity is c = 3×108 m/s, wavelength is

λ0=0.6328 µm, Planck constant is h = 6.624×10−34 J ·s,
and laser frequency is ν0 = c/λ0. Let gain bandwidth
∆νD = 109 Hz, which is often used for 0.6328-µm transi-
tion in RLGs.

We can use the parameters in Ref. [9] to estimate
random walk in high-loss DILAGs. The parameters are
A = 111.5 × 10−4 m2, L = 0.5516 m, T = 0.00244,
δ = 0.012, and Pout = 13 µW (the reason T and δ are so
large is very likely to be poor mirrors in the late 1970s).
The mode volume is not given in Ref. [9]; thus, we use
V = 8.4 × 10−8 m3 and 0.3-m gain length as an esti-
mate. With the numerical values above and Eqs. (11)
and (12), we obtain the power-dependent random walk

SΩ1 = 1.38 × 10−3◦/h1/2, and the power-independent
random walk SΩ2 = 3.41 × 10−4◦/h1/2. Because SΩ2 is
several times less than SΩ1 and SΩ =

√
S2

Ω1 + S2
Ω2 ≈

SΩ1[1 + 1
2 (SΩ2/SΩ1)2] ≈ SΩ1, the DILAGs will show ev-

ident P−1/2 rule.
For our low-loss DILAGs, the parameters are approx-

imately A = 25 × 10−4 m2, L = 0.2 m, T = 10−4,
δ = 1 × 10−3, V = 1.88 × 10−8 m3, and Pout = 10 µW.
We obtain the power-dependent random walk SΩ1 =
4.12 × 10−4◦/h1/2, and the power-independent random
walk SΩ2 = 4.23× 10−4◦/h1/2. Because SΩ1 is very close
to SΩ2, reduction of SΩ1 through increasing power only
has a slight effect to the whole random walk SΩ.

Express Eq. (10) as

y = (SΩ)2 = a1
1

Pout
+ a0 = a1x + a0, (13)

where Pout and SΩ can be measured experimentally. The
coefficients a1 and a0 can be obtained by using linear
fitting method. Therefore, we can obtain the power-
independent random walk

√
a0.

With the results in Table 1 and Fig. 1, the power-
dependent random walk and the power-independent ran-
dom walk can be obtained, as shown in Table 2. The
power-independent random walk is the main source of
the whole random walk for our DILAGs normally run-
ning at 0.7 mA.

Most of current literature have considered only the
power-dependent term of the quantum limit in the RLGs,
likely due to the following reasons:

1) the power-dependent term is the main component
of the random walk in the early age because of larger
cavity loss due to lower technologic level;

2) the random walk from dithering noise is much larger
than that from quantum noise in the dithered RLGs;
therefore, their quantum limit is difficult to study. Be-
cause the DILAGs have an intracavity element, the cavity
loss cannot be reduced to a lower level until a high tech-
nological level is reached.

We can reduce the random walk through increasing
discharge current according to Eq. (11). However, the
appearance of power-independent term results in a quan-
tum limit larger than the power-dependent term for low-
loss RLGs. If the limiting condition is constant power to
insure sufficient signal-to-noise for the PIN photodetec-
tor, the random walk is proportional to

√
δ according to

Eqs. (11) and (12). Therefore, the random walk can be
reduced through reducing the cavity loss if the size of the
DILAG is unaltered. In addition, the power-independent

Table 2. Power-dependent and Power-independent
Random Walk

Current I (mA) 0.5 0.6 0.7 0.8 0.9 1.0

DILAG 1
SΩ1(×4−4 ◦/h1/2) 3.848 3.609 3.303 3.084 2.904 2.775

SΩ2(×4−4 ◦/h1/2) 3.974

DILAG 2
SΩ1(×4−4 ◦/h1/2) 4.262 3.711 3.397 3.164 2.970 2.830

SΩ2(×4−4 ◦/h1/2) 4.300

DILAG 3
SΩ1(×4−4 ◦/h1/2) 3.252 2.873 2.620 2.439 2.301 2.187

SΩ2(×4−4 ◦/h1/2) 4.334

061404-3



COL 10(6), 061404(2012) CHINESE OPTICS LETTERS June 10, 2012

random walk can be reduced through increasing mode
volume in the gain area.

Table 1 shows that the three DILAGs have some indi-
vidual differences (different power and random walk
coefficients at the same discharge current). These
differences are mainly due to the errors produced in
the process of cavity machining and aligning, which lead
to different parameters of the DILAGs such as gain and
loss.

In conclusion, in lasers running far above threshold,
the population of upper level increases because of accu-
mulating effects of lower energy level due to its limited
lifetime, which augments spontaneous emission and thus
quantum noise. As a result, the random walk of the RLGs
consists of two components: the former decreases with
increasing power according to the P−1/2 rule, whereas
the other is power-independent. The power-independent
quantum limit has thus far not appeared in the liter-
ature. Therefore, the expressions for RLGs should be
modified to describe the low-loss RLGs exactly, where
the power-independent term takes a relatively larger pro-
portion. In order to improve the ultimate quantum limit
of the RLGs without increasing their sizes, the cavity
loss should be reduced and the mode volume in the gain
area should be augmented.
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